Detecting, Localizing, and Tracking Alarm Signals in Traffic using a Microphone Array

Clemens Hage, Technische Universität München

Within the AAL project “Intelligible City For All”
Project Milestones

Proof of concept for passive acoustic alarm signal localization on a moving vehicle

- Hardware development (microphone array, carglass microphones)
- Database of recordings (alarm car maneuvers, ego noise)
- Algorithm selection / development
- Software prototype implementation
- Evaluation on test data
- Human-Machine-Interface development
Developed Hardware

Wind-protected microphones / carglass microphones (work in progress)

- Renault Scenic II front left door
- Sealing and damping rubber
- Door can rotate on hinges
- Fixed to a rolling structure
- 12V door opening
- DC motor
Database of recordings

Separate recordings of scenarios and disturbances

Alarm signals
- Police, Ambulance & Firefighters
- IT / FR / DE / AT

Alarm car maneuvers
- Lateral pass-by (e.g. straight road)
- Front pass-by (e.g. intersection)
- Circular pass-by (omnidirectionality test)

Ego noise (open and closed windows)
- 30 km/h
- 50 km/h
- 70 km/h
- 90 km/h

Superposition of signal recordings and noise for evaluation
Spectral distribution

Alarm signal (French firefighters at 30m distance) is partly masked by ego noise
Project Milestones

Proof of concept for passive acoustic alarm signal localization on a moving vehicle

- Hardware development (microphone array, carglass microphones)
- Database of recordings (alarm car maneuvers, ego noise)
- Algorithm selection / development
- Software prototype implementation
- Evaluation on test data
- Human-Machine-Interface development
Project Partners

Task: I’City Alarm – Array Signal Processing

Collaborating partners

• ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development)
• UPD/ LinkLab (Université Paris-Descartes / TELNET CEA-Linklab Tunisie)
• TUM (Technische Universität München)

Task dissemination

• Detection/ Identification: ENEA/UPD
• Localization: ENEA/TUM
• Tracking: ENEA/TUM
Alarm Signal Detection

Initializes the processing chain

Current concept:
• Use the a priori known alarm signal specifications
• Several detection methods
 – Detect the fundamental frequency and harmonics in the signal with filterbanks
 – Short-Time-Fourier-Transform masks
 – Pulse detection in the STFT domain
• Binary decision (Alarm present or not)
• Alarm type recognition

Future development
• Signal-independent detection via tonal analysis
Alarm Signal Localization

Assumptions and concepts

Model assumptions
- 1D geometry (azimuth angle in cylindrical coordinates)
- Direct line-of-sight
- Free-field conditions (no reverberation)
- One source at a time

Steered beamforming approach (Delay-And-Sum-Beamformer / SRP-PHAT)
- Realtime processing
- Sufficient angular resolution (actually required resolution depends on HMI)
- Multiple sources can be detected

Signal characteristics well-known
- Evaluate significant frequency range only
Alarm Signal Tracking

Post processing

Goal: Stable direction estimate from noisy localization output

Particle filtering
Preliminary Localization Results

Example scenario: Lateral pass-by

Experimental Setup

Localization result (DSB) without additive noise, frequency range: 600Hz – 4kHz
Preliminary Localization Results

Lateral pass-by scenario with ego noise (urban traffic speed)

30 km/h noise added

50 km/h noise added
Preliminary Localization Results

Lateral pass-by scenario with ego noise (overland speed)

70 km/h noise added

90 km/h noise added
Conclusion

How promising is such a system?

As an early warning system
- at low speed (urban traffic)
- in good conditions (little reverberation)
- Need further comparison against human drivers

As an immediate warning system (~3-5 seconds TTC)
- Signal is always detected if distance goes below 50m and direct line-of sight
- Valuable warning system for presbyacusic people
www.icityforall.eu